scroll to top

EBSCO Auth Banner

Let's find your institution. Click here.

Combustion in the future: The importance of chemistry.

  • Academic Journal
  • Kohse-Höinghaus K; Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany.
  • Proceedings of the Combustion Institute. International Symposium on Combustion [Proc Combust Inst] 2020 Sep 25. Date of Electronic Publication: 2020 Sep 25.
  • English
  • Combustion involves chemical reactions that are often highly exothermic. Combustion systems utilize the energy of chemical compounds released during this reactive process for transportation, to generate electric power, or to provide heat for various applications. Chemistry and combustion are interlinked in several ways. The outcome of a combustion process in terms of its energy and material balance, regarding the delivery of useful work as well as the generation of harmful emissions, depends sensitively on the molecular nature of the respective fuel. The design of efficient, low-emission combustion processes in compliance with air quality and climate goals suggests a closer inspection of the molecular properties and reactions of conventional, bio-derived, and synthetic fuels. Information about flammability, reaction intensity, and potentially hazardous combustion by-products is important also for safety considerations. Moreover, some of the compounds that serve as fuels can assume important roles in chemical energy storage and conversion. Combustion processes can furthermore be used to synthesize materials with attractive properties. A systematic understanding of the combustion behavior thus demands chemical knowledge. Desirable information includes properties of the thermodynamic states before and after the combustion reactions and relevant details about the dynamic processes that occur during the reactive transformations from the fuel and oxidizer to the products under the given boundary conditions. Combustion systems can be described, tailored, and improved by taking chemical knowledge into account. Combining theory, experiment, model development, simulation, and a systematic analysis of uncertainties enables qualitative or even quantitative predictions for many combustion situations of practical relevance. This article can highlight only a few of the numerous investigations on chemical processes for combustion and combustion-related science and applications, with a main focus on gas-phase reaction systems. It attempts to provide a snapshot of recent progress and a guide to exciting opportunities that drive such research beyond fossil combustion.
    Competing Interests: None.
    (© 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.)
Additional Information
Ahead of Print
Publisher: The Institute Country of Publication: United States NLM ID: 101607410 Publication Model: Print-Electronic Cited Medium: Print ISSN: 1540-7489 (Print) Linking ISSN: 15407489 NLM ISO Abbreviation: Proc Combust Inst
Original Publication: Pittsburgh, Pa. : The Institute, c2000-
Sci Rep. 2018 Oct 29;8(1):15929. (PMID: 30374114)
J Am Chem Soc. 2014 Nov 26;136(47):16689-94. (PMID: 25381864)
J Phys Chem A. 2007 Sep 27;111(38):9532-43. (PMID: 17711267)
Opt Lett. 2018 Sep 15;43(18):4477-4480. (PMID: 30211894)
Science. 2013 Apr 12;340(6129):177-80. (PMID: 23580524)
J Phys Chem A. 2015 Feb 26;119(8):1279-91. (PMID: 25621533)
Biotechnol Biofuels. 2017 Mar 14;10:64. (PMID: 28293294)
Nature. 2014 Oct 9;514(7521):218-22. (PMID: 25231863)
J Am Soc Mass Spectrom. 2010 Apr;21(4):534-44. (PMID: 20149680)
Phys Chem Chem Phys. 2018 Apr 25;20(16):10721-10731. (PMID: 29340384)
Proc Combust Inst. 2011 Dec;33(1):325-331. (PMID: 23700382)
Angew Chem Int Ed Engl. 2017 May 8;56(20):5412-5452. (PMID: 28185380)
Angew Chem Int Ed Engl. 2017 Apr 10;56(16):4515-4519. (PMID: 28328095)
Angew Chem Int Ed Engl. 2015 Feb 23;54(9):2653-5. (PMID: 25641002)
Chemphyschem. 2013 Oct 7;14(14):3248-54. (PMID: 23946250)
Science. 2018 Sep 7;361(6406):997-1000. (PMID: 30190399)
J Phys Chem A. 2015 Jul 16;119(28):7361-74. (PMID: 25695304)
J Chem Phys. 2019 Apr 28;150(16):164305. (PMID: 31042918)
Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):13102-13107. (PMID: 29183984)
Lancet. 2014 Mar 1;383(9919):785-95. (PMID: 24332274)
Science. 2012 Jan 13;335(6065):178-9. (PMID: 22246764)
J Phys Chem A. 2017 Sep 7;121(35):6580-6602. (PMID: 28758403)
ChemSusChem. 2017 Mar 22;10(6):1039-1055. (PMID: 27925436)
Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9592-9597. (PMID: 30181279)
J Phys Chem A. 2018 Dec 13;122(49):9563-9571. (PMID: 30444617)
Phys Chem Chem Phys. 2018 Apr 25;20(16):10569-10587. (PMID: 29638230)
Acc Chem Res. 2010 Jan 19;43(1):68-78. (PMID: 19705821)
J Phys Chem A. 2015 Jul 16;119(28):7905-23. (PMID: 25870904)
Nanoscale. 2010 Aug;2(8):1324-47. (PMID: 20820719)
Nat Commun. 2017 Jun 29;8:15946. (PMID: 28660882)
J Chromatogr A. 2010 Oct 22;1217(43):6623-33. (PMID: 20444456)
Phys Chem Chem Phys. 2014 Nov 7;16(41):22791-804. (PMID: 25237782)
Nat Commun. 2019 Apr 1;10(1):1462. (PMID: 30931945)
Opt Express. 2019 Apr 15;27(8):11122-11136. (PMID: 31052961)
Nat Commun. 2019 Apr 3;10(1):1510. (PMID: 30944302)
Rev Sci Instrum. 2011 Aug;82(8):084103. (PMID: 21895257)
Phys Chem Chem Phys. 2018 Apr 25;20(16):10780-10795. (PMID: 29392266)
Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7192-7197. (PMID: 30910976)
Chemphyschem. 2013 Jun 3;14(8):1526-45. (PMID: 23595911)
Nat Commun. 2019 Jan 15;10(1):101. (PMID: 30647408)
Phys Chem Chem Phys. 2012 Mar 7;14(9):3112-27. (PMID: 22286869)
Phys Chem Chem Phys. 2013 Dec 7;15(45):19686-98. (PMID: 24135810)
J Phys Chem A. 2014 Jul 31;118(30):5573-94. (PMID: 25007100)
Phys Chem Chem Phys. 2018 Apr 25;20(16):10857-10876. (PMID: 29517780)
ChemSusChem. 2016 Mar 21;9(6):547-61. (PMID: 26948404)
Bioresour Technol. 2018 Apr;254:130-138. (PMID: 29413913)
ACS Cent Sci. 2018 Nov 28;4(11):1465-1476. (PMID: 30555898)
Angew Chem Int Ed Engl. 2016 Nov 21;55(48):14983-14987. (PMID: 27781351)
Environ Sci Technol. 2015 Sep 1;49(17):10510-20. (PMID: 26267485)
J Phys Chem A. 2018 Dec 6;122(48):9338-9349. (PMID: 30415549)
Anal Chem. 2001 Aug 1;73(15):3590-604. (PMID: 11510823)
Phys Chem Chem Phys. 2014 Mar 21;16(11):5349-67. (PMID: 24496403)
J Phys Chem A. 2015 Jul 16;119(28):7510-27. (PMID: 25798548)
Energy (Oxf). 2012 Jul;43(1):4-18. (PMID: 23700355)
Phys Chem Chem Phys. 2013 Jan 7;15(1):341-7. (PMID: 23165625)
J Phys Chem A. 2015 Jul 16;119(28):7388-403. (PMID: 25985181)
J Phys Chem A. 2017 Jan 12;121(1):181-191. (PMID: 27997191)
Angew Chem Int Ed Engl. 2010 Apr 19;49(18):3169-72. (PMID: 20391420)
Bioresour Technol. 2019 Mar;275:130-137. (PMID: 30580234)
Angew Chem Int Ed Engl. 2007;46(34):6473-5. (PMID: 17645271)
Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12692-12697. (PMID: 31182580)
Int J Environ Res Public Health. 2011 Jul;8(7):3032-62. (PMID: 21845172)
J Am Chem Soc. 2013 Jul 31;135(30):11100-14. (PMID: 23862563)
Atmos Chem Phys. 2017;17(3):2103-2162. (PMID: 30147712)
J Phys Chem A. 2012 Sep 27;116(38):9545-60. (PMID: 22905697)
J Phys Chem A. 2015 Jul 16;119(28):7430-8. (PMID: 25774572)
Phys Chem Chem Phys. 2010 Jul 7;12(25):6564-78. (PMID: 20419177)
Angew Chem Int Ed Engl. 2016 Dec 19;55(51):15840-15845. (PMID: 27805783)
Philos Trans A Math Phys Eng Sci. 2015 Aug 13;373(2048):. (PMID: 26170432)
Opt Express. 2019 Apr 29;27(9):12183-12195. (PMID: 31052763)
Sci Rep. 2018 Jan 22;8(1):1292. (PMID: 29358712)
Chemistry. 2018 May 28;24(30):7647-7652. (PMID: 29528193)
Anal Chem. 2015 Feb 17;87(4):2345-52. (PMID: 25594229)
Science. 2012 Jan 13;335(6065):204-7. (PMID: 22246773)
J Chem Inf Model. 2020 Jan 27;60(1):108-120. (PMID: 31846323)
Top Cogn Sci. 2016 Jan;8(1):180-95. (PMID: 26705767)
Angew Chem Int Ed Engl. 2010 May 10;49(21):3572-97. (PMID: 20446278)
J Phys Chem A. 2013 Jun 13;117(23):4794-816. (PMID: 23672431)
Science. 2016 Mar 4;351(6277):1065-8. (PMID: 26941314)
Science. 2015 Feb 6;347(6222):643-6. (PMID: 25657245)
Angew Chem Int Ed Engl. 2016 Jul 25;55(31):8798-805. (PMID: 27286557)
Acc Chem Res. 2017 Jan 17;50(1):74-85. (PMID: 28004916)
Chem Soc Rev. 2015 Oct 21;44(20):7371-405. (PMID: 25913215)
J Phys Chem A. 2019 Mar 7;123(9):1720-1729. (PMID: 30758204)
Angew Chem Int Ed Engl. 2018 Mar 19;57(13):3290-3296. (PMID: 29218824)
Angew Chem Int Ed Engl. 2012 Jun 11;51(24):5810-31. (PMID: 22511469)
J Phys Chem Lett. 2015 Oct 15;6(20):4153-8. (PMID: 26722791)
Science. 2014 Dec 5;346(6214):1212-5. (PMID: 25477457)
Science. 2014 Dec 5;346(6214):1183-4. (PMID: 25477442)
Phys Chem Chem Phys. 2017 Jul 19;19(28):18128-18146. (PMID: 28681879)
Environ Sci Technol. 2017 Aug 15;51(16):8879-8892. (PMID: 28662330)
Keywords: 2M2B, 2-methyl-2-butene; AFM, atomic force microscopy; ALS, Advanced Light Source; APCI, atmospheric pressure chemical ionization; ARAS, atomic resonance absorption spectroscopy; ATcT, Active Thermochemical Tables; BC, black carbon; BEV, battery electric vehicle; BTL, biomass-to-liquid; Biofuels; CA, crank angle; CCS, carbon capture and storage; CEAS, cavity-enhanced absorption spectroscopy; CFD, computational fluid dynamics; CI, compression ignition; CRDS, cavity ring-down spectroscopy; CTL, coal-to-liquid; Combustion; Combustion chemistry; Combustion diagnostics; Combustion kinetics; Combustion modeling; Combustion synthesis; DBE, di-n-butyl ether; DCN, derived cetane number; DEE, diethyl ether; DFT, density functional theory; DFWM, degenerate four-wave mixing; DMC, dimethyl carbonate; DME, dimethyl ether; DMM, dimethoxy methane; DRIFTS, diffuse reflectance infrared Fourier transform spectroscopy; EGR, exhaust gas recirculation; EI, electron ionization; Emissions; Energy; Energy conversion; FC, fuel cell; FCEV, fuel cell electric vehicle; FRET, fluorescence resonance energy transfer; FT, Fischer-Tropsch; FTIR, Fourier-transform infrared; Fuels; GC, gas chromatography; GHG, greenhouse gas; GTL, gas-to-liquid; GW, global warming; HAB, height above the burner; HACA, hydrogen abstraction acetylene addition; HCCI, homogeneous charge compression ignition; HFO, heavy fuel oil; HRTEM, high-resolution transmission electron microscopy; IC, internal combustion; ICEV, internal combustion engine vehicle; IE, ionization energy; IPCC, Intergovernmental Panel on Climate Change; IR, infrared; JSR, jet-stirred reactor; KDE, kernel density estimation; KHP, ketohydroperoxide; LCA, lifecycle analysis; LH2, liquid hydrogen; LIF, laser-induced fluorescence; LIGS, laser-induced grating spectroscopy; LII, laser-induced incandescence; LNG, liquefied natural gas; LOHC, liquid organic hydrogen carrier; LT, low-temperature; LTC, low-temperature combustion; MBMS, molecular-beam MS; MDO, marine diesel oil; MS, mass spectrometry; MTO, methanol-to-olefins; MVK, methyl vinyl ketone; NOx, nitrogen oxides; NTC, negative temperature coefficient; OME, oxymethylene ether; OTMS, Orbitrap MS; PACT, predictive automated computational thermochemistry; PAH, polycyclic aromatic hydrocarbon; PDF, probability density function; PEM, polymer electrolyte membrane; PEPICO, photoelectron photoion coincidence; PES, photoelectron spectrum/spectra; PFR, plug-flow reactor; PI, photoionization; PIE, photoionization efficiency; PIV, particle imaging velocimetry; PLIF, planar laser-induced fluorescence; PM, particulate matter; PM10 PM2,5, sampled fractions with sizes up to ∼10 and ∼2,5 µm; PRF, primary reference fuel; QCL, quantum cascade laser; RCCI, reactivity-controlled compression ignition; RCM, rapid compression machine; REMPI, resonance-enhanced multi-photon ionization; RMG, reaction mechanism generator; RON, research octane number; Reaction mechanisms; SI, spark ignition; SIMS, secondary ion mass spectrometry; SNG, synthetic natural gas; SNR, signal-to-noise ratio; SOA, secondary organic aerosol; SOEC, solid-oxide electrolysis cell; SOFC, solid-oxide fuel cell; SOx, sulfur oxides; STM, scanning tunneling microscopy; SVO, straight vegetable oil; Synthetic fuels; TDLAS, tunable diode laser absorption spectroscopy; TOF-MS, time-of-flight MS; TPES, threshold photoelectron spectrum/spectra; TPRF, toluene primary reference fuel; TSI, threshold sooting index; TiRe-LII, time-resolved LII; UFP, ultrafine particle; VOC, volatile organic compound; VUV, vacuum ultraviolet; WLTP, Worldwide Harmonized Light Vehicle Test Procedure; XAS, X-ray absorption spectroscopy; YSI, yield sooting index
Date Created: 20201005 Latest Revision: 20201006