scroll to top
0

EBSCO Auth Banner

Let's find your institution. Click here.

Hypertension promotes microbial translocation and dysbiotic shifts in the fecal microbiome of nonhuman primates.

  • Academic Journal
  • American Journal of Physiology: Heart & Circulatory Physiology; Mar2022, Vol. 322 Issue 3, pH474-H485, 12p
  • Accumulating evidence indicates a link between gut barrier dysfunction and hypertension. However, it is unclear whether hypertension causes gut barrier dysfunction or vice versa and whether the gut microbiome plays a role. To understand this relationship, we first cross-sectionally examined 153 nonhuman primates [NHPs; Chlorocebus aethiops sabaeus; mean age, 16 ± 0.4 yr; 129 (84.3%) females] for cardiometabolic risk factors and gut barrier function biomarkers. This analysis identified blood pressure and age as specific factors that independently associated with microbial translocation. We then longitudinally tracked male, agematched spontaneously hypertensive NHPs (Macaca mulatta) to normotensives (n = 16), mean age of 5.8 ± 0.5 yr, to confirm hypertension-related gut barrier dysfunction and to explore the role of microbiome by comparing groups at baseline, 12, and 27 mo. Collectively, hypertensive animals in both studies showed evidence of gut barrier dysfunction (i.e., microbial translocation), as indicated by higher plasma levels of lipopolysaccharide-binding protein (LBP)-1, when compared with normotensive animals. Furthermore, plasma LBP-1 levels were correlated with diastolic blood pressure, independent of age and other health markers, suggesting specificity of the effect of hypertension on microbial translocation. In over 2 yr of longitudinal assessment, hypertensive animals had escalating plasma levels of LBP-1 and greater bacterial gene expression in mesenteric lymph nodes compared with normotensive animals, confirming microbes translocated across the intestinal barrier. Concomitantly, we identified distinct shifts in the gut microbial signature of hypertensive versus normotensive animals at 12 and 27 mo. These results suggest that hypertension contributes to microbial translocation in the gut and eventually unhealthy shifts in the gut microbiome, possibly contributing to poor health outcomes, providing further impetus for the management of hypertension. [ABSTRACT FROM AUTHOR]
Additional Information
Copyright of American Journal of Physiology: Heart & Circulatory Physiology is the property of American Physiological Society and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
sponsored