scroll to top
0

EBSCO Auth Banner

Let's find your institution. Click here.

The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota.

  • Academic Journal
  • BMC genomics [BMC Genomics] 2009 Apr 02; Vol. 10, pp. 145. Date of Electronic Publication: 2009 Apr 02.
  • English
  • Background: Staphylothermus marinus is an anaerobic, sulfur-reducing peptide fermenter of the archaeal phylum Crenarchaeota. It is the third heterotrophic, obligate sulfur reducing crenarchaeote to be sequenced and provides an opportunity for comparative analysis of the three genomes.
    Results: The 1.57 Mbp genome of the hyperthermophilic crenarchaeote Staphylothermus marinus has been completely sequenced. The main energy generating pathways likely involve 2-oxoacid:ferredoxin oxidoreductases and ADP-forming acetyl-CoA synthases. S. marinus possesses several enzymes not present in other crenarchaeotes including a sodium ion-translocating decarboxylase likely to be involved in amino acid degradation. S. marinus lacks sulfur-reducing enzymes present in the other two sulfur-reducing crenarchaeotes that have been sequenced -- Thermofilum pendens and Hyperthermus butylicus. Instead it has three operons similar to the mbh and mbx operons of Pyrococcus furiosus, which may play a role in sulfur reduction and/or hydrogen production. The two marine organisms, S. marinus and H. butylicus, possess more sodium-dependent transporters than T. pendens and use symporters for potassium uptake while T. pendens uses an ATP-dependent potassium transporter. T. pendens has adapted to a nutrient-rich environment while H. butylicus is adapted to a nutrient-poor environment, and S. marinus lies between these two extremes.
    Conclusion: The three heterotrophic sulfur-reducing crenarchaeotes have adapted to their habitats, terrestrial vs. marine, via their transporter content, and they have also adapted to environments with differing levels of nutrients. Despite the fact that they all use sulfur as an electron acceptor, they are likely to have different pathways for sulfur reduction.
Additional Information
Publisher: BioMed Central Country of Publication: England NLM ID: 100965258 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2164 (Electronic) Linking ISSN: 14712164 NLM ISO Abbreviation: BMC Genomics Subsets: MEDLINE
Original Publication: London : BioMed Central, [2000-
J Bacteriol. 2008 Apr;190(8):2957-65. (PMID: 18263724)
Archaea. 2007 May;2(2):127-35. (PMID: 17350933)
Microbiology (Reading). 2002 Nov;148(Pt 11):3631-3638. (PMID: 12427953)
Nucleic Acids Res. 1999 Dec 1;27(23):4636-41. (PMID: 10556321)
Microbiology (Reading). 2003 Sep;149(Pt 9):2357-2371. (PMID: 12949162)
Mol Biol Evol. 1999 Apr;16(4):512-24. (PMID: 10331277)
J Mol Biol. 1995 Jan 27;245(4):385-401. (PMID: 7837271)
Genome Res. 1998 Mar;8(3):186-94. (PMID: 9521922)
Nucleic Acids Res. 2006 Mar 17;34(5):1571-80. (PMID: 16547200)
J Biol Chem. 2002 Jun 28;277(26):23500-7. (PMID: 11980912)
Bioinformatics. 2003 Aug 12;19(12):1572-4. (PMID: 12912839)
J Biol Chem. 2005 Dec 23;280(51):42004-15. (PMID: 16236714)
J Biochem. 2003 Feb;133(2):219-24. (PMID: 12761185)
J Bacteriol. 2006 Dec;188(23):8005-12. (PMID: 16997965)
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D32-6. (PMID: 16381877)
Archaea. 2003 Oct;1(3):191-7. (PMID: 15803665)
J Bacteriol. 1990 Jul;172(7):3959-65. (PMID: 2113915)
BMC Bioinformatics. 2003 Sep 11;4:41. (PMID: 12969510)
J Bacteriol. 2000 Jun;182(12):3423-8. (PMID: 10852873)
BMC Bioinformatics. 2007 Jun 18;8:209. (PMID: 17577412)
Microbiol Mol Biol Rev. 2007 Mar;71(1):121-57. (PMID: 17347521)
Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5341-4. (PMID: 8389482)
Genome Res. 1998 Mar;8(3):195-202. (PMID: 9521923)
J Chem Inf Model. 2007 Sep-Oct;47(5):1727-33. (PMID: 17636944)
Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8. (PMID: 18838391)
Nucleic Acids Res. 2008 Jan;36(Database issue):D528-33. (PMID: 17933782)
J Bacteriol. 2000 Apr;182(7):1864-71. (PMID: 10714990)
BMC Bioinformatics. 2006 Mar 16;7:142. (PMID: 16542435)
Appl Environ Microbiol. 1996 Feb;62(2):316-22. (PMID: 8593035)
J Mol Biol. 1999 Jul 2;290(1):347-61. (PMID: 10388577)
J Bacteriol. 1994 Nov;176(21):6509-17. (PMID: 7961401)
Genome Res. 1998 Mar;8(3):175-85. (PMID: 9521921)
Biochimie. 1996;78(5):364-9. (PMID: 8905155)
J Bacteriol. 2006 Mar;188(5):2014-9. (PMID: 16484213)
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80. (PMID: 7984417)
Syst Appl Microbiol. 1983;4(1):79-87. (PMID: 23196301)
Biol Direct. 2007 Nov 27;2:33. (PMID: 18042280)
J Bacteriol. 2007 Jun;189(12):4431-41. (PMID: 17449625)
Eur J Biochem. 1992 Jun 1;206(2):503-10. (PMID: 1597189)
J Mol Biol. 1990 Oct 5;215(3):403-10. (PMID: 2231712)
R01 GM072285 United States GM NIGMS NIH HHS; GM72285 United States GM NIGMS NIH HHS
70FD1KFU70 (Sulfur)
EC 2.7.7.- (Transposases)
EC 4.1.1.- (Carboxy-Lyases)
EC 4.1.1.112 (oxaloacetate decarboxylase)
EC 7.2.4.3 (Methylmalonyl-CoA Decarboxylase)
Date Created: 20090404 Date Completed: 20090717 Latest Revision: 20211020
20211214
PMC2678158
10.1186/1471-2164-10-145
19341479
sponsored